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Abstract—Data driven science is becoming increasingly more
common, complex, and is placing tremendous stresses on visual-
ization and analysis frameworks. Data sources producing 10GB
per second and more, are becoming increasingly commonplace
in both simulation, sensor and experimental sciences. These data
sources, which are typically distributed around the world, must be
analyzed by teams of scientists that are also distributed. Enabling
scientists to view, query and interact with such large volumes
of data in near-real-time requires a rich fusion of visualization
and analysis techniques, middleware and workflow systems. This
paper discusses initial research into visualization and analysis of
distributed data workflows that enables scientists to make near-
real-time decisions of large volumes of time varying data.

I. INTRODUCTION

Data driven sciences are placing enormous stresses on
existing visualization and analysis frameworks. These stresses
are occurring across several different axes.

First, increasingly larger volumes of data are being gen-
erated, and at increasing frequency as well. For example,
in the test case that we are exploring, large scale parallel
plasma fusion simulation codes, 10+ GB of data are being
generated each second. Similar amounts and frequency of
data are generated from sensors inside fusion experiments that
are in operation already, and will only increase when large
experiments, such as ITER [1] become fully operational.

Second, scientists and data are often distributed in multiple
geographic locations. This requires that either the scientists be
moved closer to the data, which is fraught with logistical and
convenience difficulties, or move data (either all, or selected
portions) to where the scientists are located.

The movement of data leads to additional stresses. It is
often not possible to move the large volumes of data to
remote locations such that scientists can interact, analyze and
visualize it in a near-real-time manner that will enable them
to make timely decisions. Finally, the workflows (both simple
and complex) required by scientists can require computational
resources that may not be available at the remote sites where
the scientists are located.

In this paper, we describe initial work from an active
research effort to explore data coupling and near-real-time
analysis and visualization between two geographically sepa-
rated sites. In this instance, Singapore and Atlanta. Specifically,
a plasma fusion simulation running at the A*STAR Compu-
tational Resource Centre in Singapore, and the visualization
and analysis running at Georgia Tech in Atlanta, Georgia.
We demonstrated this working system at the SuperComputing
2015 Conference in Austin, Texas. At each timestep of the
simulation running in Singapore, summary data would be
generated and moved to Atlanta where it would be displayed
by visualization tools. The scientist is then able to select
regions of interest from the summary data and extract features
from this area of interest. Once the features are identified,
simulation particle data that lie within the features are extracted
and moved to Atlanta for visualization.

In this work we are exploring fusion of a variety of different
technologies. We are using a high-level API to provide location
independent data access and remote reading and writing. The
middleware components implement RDMA over wide-area
networks and support data indexing for optimized filtering
operations. The data analysis and visualization components
use this middleware to facilitate rich interactions with the
data. These components use the data subsetting and filtering
operations of the middleware to achieve near-real-time inter-
action with the running simulation. These results show that
near-real-time interaction can be achieved, even with the sites
are separated by 10’s of thousands of miles. Further, we are
able to show end-to-end data selection and visualization within
the tight 10 second time constraint window imposed by the
running simulation.

In the remainder of this paper we discuss related work,
discuss some of the broader motivations for this work, provide
a detailed discussion of the system and the results obtained
to date. Finally we discuss areas of continuing and future
research.



II. RELATED WORK

Past work in this area has explored both simulation mon-
itoring and steering. A lot of past effort has gone into de-
signing methods for quickly and efficiently visualizing data
across a network. Some notable examples include Visapult [2],
Visualization Dot Com [3], VisPortal [4], and a Real-Time
Monitoring framework for large scientific simulations [5].
VisPortal and Visualization Dot Com build on the foundations
of Visapult, and provide a remote distributed visualization
framework for efficient visualization of remote simulation data.
This framework uses both the local visualization client and the
remote data client to perform parallel renderings, decreasing
the time to produce the final visualizations. By leveraging
Visapult, VisPortal and Visualization Dot Com are able to
provide convenient access to simulation data to scientists
through an easy to use and access online interface.

One notable example of work in simulation steering is
SCIRun [6]. SCIRun presents a programming environment
to simulation scientists and easily allows them to modify
their simulations interactively as well as create automatically
changing parameters based on boundary conditions.

Our work leverages the ideas from these past projects, and
has allowed us to create a visualization and analysis pipeline
that is extensible and operates on user driven subselections of
live simulation data.

III. OBJECTIVES

Our objectives in this research are to explore data cou-
pling and near-real-time analysis and visualization between
timevarying producers of large data, and distributed data
consumers. This capability for near-real-time access to data
will help scientists observe, monitor, analyze the science as it
happens, and enable them to make time-critical decisions.

We are working with the XGC1 [7] simulation code, a
highly scalable physics code used to study plasmas in fusion
tokamak devices. XGC1 is a particle-in-cell code, a common,
and important method for solving physics problems. As such,
XGC1 represents a large class of many different simulation
codes. XGC1, like other particle-in-cell codes uses a grid,
or mesh to represent a set of “cells”, and a large number
of charged particles. At each timestep, the particles state is
updated according to the underlying physics equations, and
then the particles are statistically deposited onto the cells
within the grid. Scientists are interested in both the mesh, and
the particles.

In particular, the scientists are interested in the analysis
and visualization of nonlinear turbulent eddies from XGC1,
especially their 3D structure, and the perturbation to the orbits
of particles within the eddies.

Because of the large volumes of data generated by XGC1,
it serves as an excellent test-case for our research. XGC1 simu-
lations routinely generate several TB’s of data, and larger runs,
such as recent runs for ITER have produced 20 TB of data.
Similarly, sensor networks attached to an experimental device
like ITER are expected to generate TBs of data. Simulations
and experiments in other domains produce similar amounts of
data. Data volume estimates for the Square Kilometer Array

Radio Telescope are even larger, around a TB of data every
second.

Simulation centers and experimental facilities are scarce,
and very expensive resources, and scientists have only fixed
windows of time to do their science. Simulations that go
awry, or encounter run-time problems translate into real loss
of time to do science and the costs associated with running the
facility. Experimental facilities face an even bigger problem.
For instance, in the case of the ITER reactor, the buildup of
instabilities within the plasma could cause physical damage to
the reactor vessel. This results in significants costs for repairs,
and downtime where other experiments are not able to run.

Allowing the scientists to remotely monitor and track
their simulations and experiments in near-real-time will allow
them to make important decisions. These include aborting
when things appear to be going wrong, or not answering
the anticipated questions being posed. Or to continue as the
simulation or experiment is running as expected. And finally,
to steer the simulation or experiment as the results for each
timstep are observed and analyzed.

IV. SYSTEM IMPLEMENTATION

Our visualization system is spread across two different geo-
graphic locations, The A*STAR Computational Resource Cen-
tre in Singapore and Georgia Tech in Atlanta, and is a synthesis
of a variety of different tools and frameworks. On a high level
this system consists of the simulation and data manipulation
routines located in Singapore, the interactive visualization and
analysis routines located at Georgia Tech, and a connection
over the wide area network using the ADIOS [8] middleware
and the the ICEE [9], FlexPath [10], and DataSpaces [11]
transport methods. Combined, these technologies allowed us
to perform memory to memory data delivery from one side
of the pipeline to the other. The ADIOS middleware makes
this delivery transparent to the simulation and visualization at
either ends of the pipeline. A depiction of the system and data
flow pipeline is shown in Fig. 1.

On the Georgia Tech side, our pipeline consists of two
components, VisIt [12] to allow for interactive visualization
and an eddy picker to allow the scientist to specify areas of
interest. Python is used to coordinate communication between
the VisIt and eddy picking tool, and perform some basic data
analysis. The data picker was written in Qt and allows the
user to select a region of interest on one of the planes of
the simulation. In our case there were 512 individual planes
spaced around the tokamak simulation, and are composites of
the dpot (derivative potential) variable in the simulation, which
enables the user to select areas of high turbulence for further
visualization and analysis, see Fig. 2.

Eddies in turbulent fusion plasmas are typically elliptical
in shape, so the picking tool supports selecting an ellipse
with 3 points: the center point, and two points that lie on
the ellipse. From these three points the major and minor
radii are computed, as well as the direction of the major
axis. Additionally, a dial is provided to control how many
revolutions around the torus are used for construction of the
3D eddies.

Once a region of interest is selected, three things are
triggered. First, the magnetic field line at the center point of
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Fig. 1: The data flow pipeline for our workflow showing the distribution of the simulation and data querying in relation to the
interactive visualization system.

the ellipse is calculated and displayed. Second, the 3D eddy
feature is computed and displayed. These two steps are shown
in Fig. 3. In this figure, a single plane from the simulation is

Fig. 2: The eddy selection interface demonstrating the selection
of an eddy on a plane of the simulation data.

shown, as well as the magnetic field line at the selection point
(in yellow), and the 3D eddy (in orange).

Next, a tight bounding volume of the 3D eddy is calculated
and sent using ADIOS to Singapore. Once the Singapore side
receives, using ADIOS, the bounding volume update, it will
extract the particles that lie within the bounding volume. The
extracted particles are sent using ADIOS to the Georgia Tech
side and visualized. The particles, along with the magnetic field
line and 3D eddy are shown visualized together in Fig. 4.

The scientists expressed the need to track particles con-
tained in an eddy at a particular time and observe their
evolution over time. This capability is activated with a toggle
on the picker tool. If “ID Tracking” is turned on, then the
IDs of the particles contained in the 3D eddy are cached, and
at every timestep these particles are sent from Singapore to
Georgia Tech for visualization. With this option, the scientists
can follow the evolution of the particle orbits over time, and

Fig. 3: The VisIt interface window demonstrating the tracking
of the magnetic field line and eddy corresponding to the eddy
selection in in the picker shown in 2.



Fig. 4: The VisIt interface window demonstrating particle
tracking and disbursement in a turbulent eddy over multiple
simulation timesteps.

Fig. 5: The VisIt interface window demonstrating particle
tracking by ID of particles that were inside a 3D eddy at a
particular timestep in the past.

study their relationship to the field line and the 3D eddy
feature. Fig. 5 shows an example of tracking particles by ID.

On the Singapore side, the pipeline has three primary
components, the running XGC simulation, ADIOS, and the
wide are network transfer method. The XGC1 simulation
produces new timesteps at an average rate of once every 10
seconds. This data is then handled by the ADIOS middleware,
which consists of two different paths of execution. First, the
field variables used to calculate eddies are transmitted over the
WAN to the visualization system so that it can begin processing
the new timestep. Second, FastBit [13] indexing is done on
the particle data from the new timestep. This indexing is done
automatically for each new timestep so that if the particle data
is requested by the visualization, it is indexed and ready to be
transmitted based on the visualization query.

V. SYSTEM RESULTS AND PERFORMANCE

The performance and viability of our system was demon-
strated at our booth on the SC15 Demo floor. We demonstrated
that our system enabled near-real-time interaction with large
data sets located around the world. Tests of our system
were conducted between Singapore and Georgia Tech with
Xwindow forwarding to the showroom floor. We gave our

visualization and analysis routines a maximum of 10 seconds
to perform an update. This time budget included the time to
send 512 planes from Singapore to Georgia Tech, calculate
the bounding boxes for the feature of interest on each, send
that data back to Singapore, perform the data and particle sub-
selection, send that data to Georgia Tech, and perform the
visualization update. This maximum time limit kept us below
the average time for a new timestep to be produced by the
XGC simulation, allowing us to visualize each one as it was
produced. Table I presents the size of the data being produced
by the simulation, as well as the average data being sent to
Georgia Tech after the user made a selection.

TABLE I: Breakdown of the data produced by XGC and
processed by our pipeline during the course of the simulation.

Number of Planes Number of Particles Number of Time Steps

512 819,200,00 500

Particle Data Size 3D dpot Data Size Average Data per Selection

62 GB per step 162 MB per step 0.1% subselection: 62 MB

The amount of data that we ended up having to send
from Singapore back to Georgia Tech and process in our
visualization routines is one of the main strengths of our
system. By identifying the critical subsets of data, as defined
by the scientist, we are able provide a near-real-time interac-
tive experience with the running simulation. On average, the
amount of particle data moved on each time step was around
62 MB, a mere 0.1% of the total data size.

Additonaly, this selection could be done very quickly
though our use of FastBit to perform indexing on the simula-
tion side. By having these indices precomputed, subselecting
the data in Singapore was reduced to only a few seconds.
This allowed our system to remain responsive to user update
requests, and enabled new timesteps to be displayed as they
were produced. This serves as a demonstration of a significant
step forward in accomplishing our goal of a data driven, near-
real-time, distributed visualization for a running simulation.

VI. FUTURE WORK

As this is an area of active research, we are planning
on extending this work in a variety of different directions.
First, we plan on using more complex workflows that utilize
data from more sources. The work with fusion simulations
can be extended to include experimental data, or previously
run simulations for comparison. We will rely heavily on the
ADIOS middleware to manage the complex, and time critical
coordination and movement of data. Additionally, we will
continue to work with the various transport methods in ADIOS
to optimize performance. These more complex workflows, with
different data sources, can employ machine learning techniques
to detect features and events automatically. These methods
will also serve as mechanisms for steering of simulations and
experiments.

We also plan to explore workflows where in situ analysis
and visualization are used as end products, or as pre-processing
steps for other user defined tasks. As such, we plan to



incorporate our previous work with EAVL and ADIOS [14]
into these workflows.

For this particular demonstration of nonlinear turbulent
eddies, we plan to use more advanced techniques for feature
identification and extraction. This includes better identification
of 2D features on each plane of the simulation, as well as the
3D construction of the eddies across a set of 2D planes. There
is a wealth of research and development that can be utilized for
better feature detection. Improved feature detection will allow
for better identification of particles within the eddies, and aid
in the study of their dynamical behavior in the plasma.

Finally, the infrastructures are largely science agnostic, and
so working with additional simulations and experiments will
provide opportunities for further expansion.
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